EE145B: Compartmental Modelling

by Jonathan Maltz (jon@eecs.berkeley.edu)

Basic Definitions

- A Compartmental system is composed of a finite number of macroscopic *compartments* or *pools*.
- Compartments contain and exchange material. They are homogeneous and well-mixed.

 They do not, in general, correspond to physical volumes or spaces.
- **Closed systems** have no input or output to environment.
- **Open systems** may have input to or output from any compartment.
- Fractional transfer coefficients tell us what fraction of a compartment is exchanged per unit time.
- **Linear compartmental analysis** involves models defined in terms of linear, constant coefficient differential equations.

A simple linear two compartment model

Two compartment model compartment 1 compartment 2 k21 k12 fractional transfer coefficient K

This system consists of two homogeneous, well-stirred compartments.

Compartment 1 contains a material at concentration $x_1 \, \text{kg/m}^3$. The size of this compartment is $q_1 = x_1 V_1 \, \text{kg}$.

Compartment 2 contains the same material at concentration $x_2 \, \text{kg/m}^3$. The size of this compartment is $q_2 = x_2 V_2 \, \text{kg}$.

A membrane of cross-sectional area A having diffusion permeability constants k_{21} and k_{12} m/s for rightward and leftward exchanges, respectively, separates the compartments.

Loss from compartment 2 to the environment occurs at rate $K \, \text{m}^3/\text{s}$.

We might model the perfusion of a radioactive tracer in the bloodstream (compartment 1) into tissue (compartment 2) using this system.

A linear system model is applicable only if we assume that the rate of transfer from a compartment is proportional to the concentration in that compartment.

Two compartment model description

This system is characterised by the simultaneous first-order differential equations:

$$\frac{dq_1}{dt} = -k_{21}Ax_1 + k_{12}Ax_2$$

$$\frac{dq_2}{dt} = k_{21}Ax_1 - k_{12}Ax_2 - Kx_2.$$
(1)

$$\frac{dq_2}{dt} = k_{21}Ax_1 - k_{12}Ax_2 - Kx_2. (2)$$

Using the relations:

$$f_{12} = k_{12}A/V_2 \,\mathrm{s}^{-1}$$
 (3)

$$f_{21} = k_{21}A/V_1 \text{ s}^-1$$
 (4)

$$f_{02} = K/V_2 \, \mathrm{s}^- 1,$$
 (5)

we obtain the fractional transfer coefficient representation:

$$\frac{dq_1}{dt} = -f_{21}q_1 + f_{12}q_2 (6)$$

$$\frac{dq_2}{dt} = f_{21}q_1 - f_{12}q_2 - f_{02}q_2. (7)$$

These equations may be solved (possibly using the unilateral Laplace transform) to yield:

$$q_1 = c_1 e^{-m_1 t} + c_2 e^{-m_2 t} (8)$$

$$q_2 = c_1 \left[\frac{f_{21} - m_1}{f_{12}} \right] e^{-m_1 t} + c_2 \left[\frac{f_{21} - m_2}{f_{12}} \right] e^{-m_2 t}$$
 (9)

where

$$m_1 = \frac{f_{12} + f_{21} + f_{02}}{2} + \frac{1}{2}\sqrt{(f_{12} + f_{21} + f_{02})^2 - f_{21}f_{02}}$$
 (10)

$$m_2 = \frac{f_{12} + f_{21} + f_{02}}{2} - \frac{1}{2} \sqrt{(f_{12} + f_{21} + f_{02})^2 - f_{21} f_{02}}. (11)$$

The c_i are determined by the initial conditions of the system.

Simulation

- We may simulate this particular system using the closed-form expressions obtained through solution of the differential equation.
- In general, a compartmental system may have many inputs and outputs. Also, input functions are often difficult to express analytically.
- It is thus desirable to seek a method which allows simulation of these more complicated systems.
- We exploit Matlab's ability to simulate arbitrary state-space models, to perform such simulations.

A state-space model describes the time trajectories (first derivatives) of internal states of a system in terms of all other system state variables, and system inputs. The internal state-space model is described by a system of first-order differential equations:

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + b_{11}u_1 + \dots + b_{1p}u_p
\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + b_{21}u_1 + \dots + b_{2p}u_p
\vdots
\dot{x}_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + b_{m1}u_1 + \dots + b_{mp}u_p$$

where the x_i are the system state variables and the u_i are the system inputs.

We may restate the above in matrix form as:

$$\dot{X} = AX + BU. \tag{12}$$

Simulation continued

In compartmental analysis, a state variable might be assigned to the mass or concentration in each compartment. Thus, for the compartmental model depicted as:

whose dynamics are embodied by the DE's:

$$\frac{dq_1}{dt} = -f_{21}q_1 + f_{12}q_2 + I(t)$$

$$\frac{dq_2}{dt} = f_{21}q_1 - f_{12}q_2$$
(14)

$$\frac{dq_2}{dt} = f_{21}q_1 - f_{12}q_2 \tag{14}$$

we find

$$A = \begin{bmatrix} -f_{21} & f_{12} \\ f_{21} & -f_{12} \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (15)

The general state-space model also allows us the specify how the internal states x_i of the system are measured. Measurements are allowed to depend both on the state variables and on the system inputs:

$$y_1 = c_{11}x_1 + c_{12}x_2 + \dots + c_{1n}x_n + d_{11}u_1 + d_{12}u_2 + \dots + d_{1p}u_p$$

$$y_2 = c_{21}x_1 + c_{22}x_2 + \dots + c_{2n}x_n + d_{21}u_1 + d_{22}u_2 + \dots + d_{2p}u_p$$

$$\vdots$$

$$y_k = c_{k1}x_1 + c_{k2}x_2 + \dots + c_{kn}x_n + d_{k1}u_1 + d_{k2}u_2 + \dots + d_{kp}u_p$$

where the y_i are the system outputs measured.

Simulation continued

The corresponding matrix formulation, is:

$$Y = CX + DU. (16)$$

For the model under consideration, since we wish to consider both state variables as system output, we have the matrices:

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{17}$$

Let's see how we can use the Matlab function *lsim.m* to simulate this state-space model. The function *simtwocomp.m* illustrates this:

```
function [Y,T] = simtwocomp(f12, f21, U1, U2, t, X0)

% simulates a two compartment model given:
% f12, f21: fractional rate constants in units M/M / T
% U1, U2: input function waveforms over abscissa t for
% compartments 1 (U1) and 2 (U2). May be empty ([]).

% prepare input function matrix U

G = zeros(2);

numinputs = 2;
U = zeros(length(t), numinputs);

if ~isempty(U1)
   U(:,1) = U1(:);
   G(1,1) = 1;
end;
```

Matlab simulation continued

```
if ~isempty(U2)
  U(:,2) = U2(:);
  G(2,2) = 1;
end;
% construct state space model matrices
A = [-f21 \ f12]
      f21 -f12];
B = G;
C = [1 \ 0]
     0 1];
D = [0 \ 0
     0 0];
% simulate linear system
[Y,T] = lsim(A,B,C,D,U,t,X0);
The use of this function is demonstrated by the script runtwocomp.m:
% script to invoke simulation of two compartment model
% set parameters
f21 = .8; \% ml/ml per minute
f12 = .1; % ml/ml per minute
```

Matlab simulation continued

```
ts = .05; % sampling rate
t = 0:ts:10; % minutes
U1 = 64 * t.^2 .* exp(-t/.3); % input function for compartment 1
U2 = []; % input function for compartment 2
XO = [.0]
      .0]; % initial conditions
[Y,X] = simtwocomp(f12, f21, U1, U2, t, X0);
out1= Y(:,1);
out2= Y(:,2);
figure(1)
plot(t,out1, t, out2, '--', t, U1, ':');
legend('Compartment 1 tracer mass', 'Compartment 2 tracer mass', ...
       'Input function', 0);
title('Simulation waveforms for two compartment model');
xlabel('time (minutes)');
ylabel('mass');
```

Simulation results

Now, let's have a look what we get out of the system under these conditions:

We note that this is the response to an input function of the form

$$I(t) = C t^2 e^{-\frac{t}{\tau}}, (18)$$

which is an ideal approximation of a typical blood input function. We may find the system impulse response by making the alternative assignment:

Simulation results

Simulation then yields:

We may also allow for the possibility of residual amounts of tracer material present in the compartments at the start of measurement:

$$X0 = [0.1 \\ 0.3];$$

Simulation results

We observe how the presence of non-zero initial conditions complicates the forms of the responses obtained:

